## Renato Morbidelli, Corrado Corradini

## METODI QUANTITATIVI PER LA GESTIONE OTTIMALE DELLE ACQUE

| Prima edizione: Margiacchi Galeno Editrice 2011<br>Seconda edizione rivista e ampliata: Morlacchi Editore 2015                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "Qualunque tipo di ricavo ottenuto dagli autori per la vendita di questo libro<br>verrà devoluto al Comitato Umbria dell'AIRC (Associazione Italiana per la<br>Ricerca sul Cancro)                                                                                                                                                                                                             |
| Isbn/Ean: 978-88-6074-700-6                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                |
| Copyright © 2015 by Morlacchi Editore, Perugia. Tutti i diritti riservati. È vietata la riproduzione, anche parziale, con qualsiasi mezzo effettuata, compresa la copia fotostatica, non autorizzata. Finito di stampare nel mese di agosto 2015 presso la tipografia "Digital Print - Service", Segrate (MI).  Mail to: redazione@morlacchilibri.com   www.morlacchilibri.com/universitypress |



## Indice

|    | PREMESSA                                                            | 9  |
|----|---------------------------------------------------------------------|----|
|    |                                                                     |    |
| 1. | Idrosistemi                                                         |    |
|    | 1.1 Generalità                                                      | 11 |
|    | 1.2 Stato di un idrosistema e sua trasformazione                    | 11 |
|    | 1.3 Problemi da risolvere nella ingegneria degli idrosistemi        | 12 |
|    | 1.4 Alcuni esempi di idrosistema                                    | 14 |
|    | 1.5 Modello matematico da risolvere                                 | 19 |
|    | 1.6 Ottimizzazione e non-inferiorità                                | 21 |
|    | Problemi                                                            | 22 |
|    | Bibliografia                                                        | 23 |
|    |                                                                     |    |
| 2. | Programmazione lineare                                              |    |
|    | 2.1 Forma standard                                                  | 25 |
|    | 2.2 Forma canonica                                                  | 27 |
|    | 2.3 Operazioni elementari per la riduzione di un modello LP a forma |    |
|    | standard o a forma canonica                                         | 28 |
|    | 2.4 Soluzioni fattibili                                             | 29 |
|    | 2.5 Soluzioni ottimanli                                             | 29 |
|    | 2.6 Combinazioni convesse nello spazio euclideo                     | 30 |
|    | 2.7 Soluzioni fattibili di modelli LP nello spazio euclideo         | 31 |
|    | 2.8 Vertici di un poliedro convesso e punti interni                 | 32 |
|    | 2.9 Soluzione ottimale di un modello LP e vertici                   | 34 |
|    | 2.10 Individuazione dei vertici del poliedro convesso               | 35 |
|    | 2.11 Metodo del Pivot (o metodo Jordan) per la soluzione di sistemi |    |
|    | lineari algebrici                                                   | 36 |
|    | 2.12 Algoritmo del simplesso                                        | 38 |

| 2.13 Proprietà ulteriori usate nell'algoritmo del simplesso            | 40 |
|------------------------------------------------------------------------|----|
| 2.14 Tabella del simplesso                                             | 41 |
| 2.15 Un semplice problema risolto con l'algoritmo del simplesso        | 42 |
| 2.15.1 Formulazione del problema                                       | 42 |
| 2.15.2 Definizione del modello matematico                              | 43 |
| 2.15.3 Riduzione del modello a forma standard                          | 44 |
| 2.15.4 Ricerca della soluzione di partenza                             | 44 |
| 2.15.5 Algoritmo del simplesso in forma tabellare                      | 45 |
| 2.16 Determinazione di una soluzione di base ammissibile del problema  |    |
| dei vincoli associato al modello LP                                    | 47 |
| 2.17 Strumenti pratici per risolvere problemi di LP                    | 50 |
| Problemi                                                               | 51 |
| Bibliografia                                                           | 58 |
| 3. Programmazione dinamica                                             |    |
| 3.1 Premesse                                                           | 59 |
| 3.2 La scomposizione di un problema in sottoproblemi                   | 60 |
| 3.3 Determinazione della soluzione in forma tabellare                  | 65 |
| 3.4 Ottimizzazione dei ricavi con gestione adattiva                    | 73 |
| 3.5 Ottimizzazione dei ricavi con gestione stocastica                  | 73 |
| 3.6 Modelli di ottimizzazione per riserva singola a scopi multipli     | 78 |
| Problemi                                                               | 83 |
| Bibliografia                                                           | 85 |
| 4. Derivazione delle acque                                             |    |
| 4.1 Premesse                                                           | 87 |
| 4.2 Serbatoi di regolazione                                            | 87 |
| 4.2.1 Regolazione su base deterministica e su base stocastica          | 90 |
| 4.2.2 Regolazione dei serbatoi con approccio deterministico            | 91 |
| 4.2.2.1 Criteri di base per la regolazione dei serbatoi artificiali    |    |
| e soluzione richiesta                                                  | 91 |
| 4.2.2.2 I Parametri fondamentali del regime dei serbatoi               | 92 |
| 4.2.3 Capacità di regolazione totale con portata di deflusso costante  |    |
| come obiettivo                                                         | 94 |
| 4.2.4 Capacità di regolazione totale con portata di deflusso variabile |    |
| con andamento prestabilito come obiettivo                              | 96 |
| con andamento prestabilito come obiettivo                              | 96 |
|                                                                        |    |

| 4.2.5 Regolazione parziale con portata di deflusso costante          |     |
|----------------------------------------------------------------------|-----|
| come obiettivo                                                       | 98  |
| 4.2.6 Regolazione parziale con portata di deflusso variabile         |     |
| con andamento prestabilito come obiettivo                            | 101 |
| 4.3 Impianti ad acqua fluente                                        | 104 |
| 4.3.1 La configurazione ottimale delle turbine                       | 105 |
| Problemi                                                             | 109 |
| Bibliografia                                                         | 113 |
| 5. Processi stocastici e generazione dei dati                        |     |
| 5.1 Premesse                                                         | 115 |
| 5.2 Processi stocastici                                              | 116 |
| 5.2.1 Stazionarietà                                                  | 120 |
| 5.2.2 Ergodicità                                                     | 121 |
| 5.2.3 Indipendenza                                                   | 122 |
| 5.2.4 Invertibilità                                                  | 122 |
| 5.3 Modelli idrologici e generazione dei dati                        | 123 |
| 5.4 Esame degli autocorrelogrammi empirici                           | 125 |
| 5.5 La classe dei processi <i>ARIMA</i>                              | 127 |
| 5.5.1 Il processo lineare autoregressivo $AR(p)$                     | 127 |
| 5.5.2 Il processo di media mobile $MA(q)$                            | 129 |
| 5.5.3 Il processo misto autoregressivo e di media mobile $ARMA(p,q)$ | 130 |
| 5.6 La costruzione di un modello ARIMA                               | 130 |
| 5.6.1 Analisi preliminari                                            | 130 |
| 5.6.2 L'identificazione del modello                                  | 131 |
| 5.6.3 La stima dei parametri                                         | 133 |
| 5.6.4 La verifica del modello                                        | 134 |
| Problemi                                                             | 135 |
| Bibliografia                                                         | 139 |

## **PREMESSA**

Questo volume contiene una sintesi delle principali problematiche affrontate nel corso di Gestione delle Risorse Idriche tenuto presso l'Università degli Studi di Perugia.

Tale disciplina è stata strutturata e si è poi sviluppata con l'obiettivo di fornire strumenti e conoscenze che consentano di gestire adeguatamente la risorsa acqua, bene primario che si rinnova grazie ad un ciclo naturale mantenuto attivo dal sole.

Come noto, la disponibilità di acqua si dimostra sempre più inadeguata se confrontata con i crescenti fabbisogni dell'umanità. A causa di ciò la risorsa idrica sta acquistando un valore economico in continua ascesa e sembra che in un futuro non troppo lontano possa divenire la principale causa di pericolosi conflitti bellici.

In tale contesto assumono grande importanza le attività di programmazione, volte ad individuare nuove fonti di attingimento ma soprattutto a disciplinarne l'uso, cui sono dedicati gli argomenti trattati in questo testo.